

# Potential Emission Reductions from Advanced Power Generation



**Jarad Daniels** 

Program Manager
U.S. Department of Energy

**May 2002** 



### Overview

- Background
- Emission Reduction Technologies for Existing Fleet
- Emission Reduction Technologies for New Fleet
- Conclusions



## World Electricity Consumption



Source: IEO2002, Table 21

Worldwide electricity consumption is projected to grow at an average rate of 2.7% between now and 2020



## U.S. Electricity Consumption



Source: AEO2002, Table A2

By 2020, 355 gigawatts of new generating capacity are expected in the U.S. alone to meet growing demand and to replace retiring units



## Fuels for Electricity Generation

- Continued increase in the use of natural gas for electricity generation is expected worldwide
- Coal is expected to retain the largest market share, but its dominance will be reduced by the rise in natural gas
- The role of nuclear power is projected to lessen as reactors reach the end of their lifespans and few replacements are built
- Electricity generation from hydropower and other renewables is expected to grow by more than 50% over the next 20 years, but their share of total production is expected to remain near the current level of 20%



## Emission Reduction Targets

- President's Clear Skies Initiative
  - Dramatically and steadily cuts power plant emissions of three worst air pollutants (3-P Proposal):
    - Caps sulfur dioxide (SO<sub>2</sub>) emissions at 3 million tons by 2018, or a 73% reduction
    - Caps emissions of nitrogen oxides ( $NO_X$ ) at 1.7 million tons by 2018, or a 67% reduction
    - Cuts mercury (Hg) emissions by 69% the first ever national cap on mercury emissions, capped at 15 tons in 2018
  - Reduces greenhouse gas intensity by 18 percent over the next 10 years



### Overview

- Background
- Emission Reduction Technologies for Existing Fleet
- Emission Reduction Technologies for New Fleet
- Conclusions



## Benefits Legacy from CCT Program and Associated R&D

- ♦ NO<sub>X</sub> Control Technologies
  - ◆ 75% of existing U.S. coal-fired units have been, or currently are being, retrofitted with low-NO<sub>X</sub> burners
  - An estimated 30% of U.S. coal-fired generating capacity will incorporate SCR technology by 2004
  - Over 60 million tons of NO<sub>X</sub> emissions have been avoided since 1970 based on average fleet emissions
- Fluidized Bed Combustion Technologies
  - ◆ FBCs offer inherently low NO<sub>X</sub> emissions, high combustion and SO<sub>2</sub> capture efficiency, and extreme fuel flexibility
    - ◆ Six FBCs in Pennsylvania are using coal waste as fuel, eliminating an environmental problem, saving \$1 billion in fuel costs, and avoiding 1.8 million tons of NO<sub>X</sub> emissions over their life



## Benefits Legacy from CCT Program and Associated R&D

- ♦ SO<sub>2</sub> Control Technologies
  - ◆ An estimated 30% of U.S. coal-fired generating capacity will incorporate FGD technology by 2002
  - ♦ 127 million tons of SO<sub>2</sub> emissions have been avoided since 1970 as a result of FGD installations





### **Environmental Benefits of CCT**



The U.S. uses two-and-a-half times the coal it did in 1970, yet pollutant emissions have decreased

For the future – increased coal use will bring pressure to reduce emissions even further



### Overview

- Background
- Emission Reduction Technologies for Existing Fleet
- Emission Reduction Technologies for New Fleet
- Conclusions



## Power Plant Improvement Initiative

- Established in FY 2001 through transfer of \$95 million from previously appropriated CCT Program funds
- Supported one solicitation incorporating CCT Program principles, including minimum 50% industry cost sharing
- ♦ Resulted in 24 proposals valued at \$535 million
- Seven projects valued at \$111 million, of which DOE is projected to fund approximately \$51 million (46%), subject to negotiation
- Estimate completion of negotiation and cooperative agreement awards by Spring 2002
- Of 7 projects, 3 address NO<sub>x</sub> control, 1 addresses multicontaminant control (NO<sub>x</sub>, SO<sub>2</sub>, PM<sub>2.5</sub>, mercury, and acid gases), 1 addresses PM<sub>2.5</sub> control, 1 addresses improved efficiency and reliability, and 1 addresses solid waste utilization



## Clean Coal Power Initiative

- Cooperative, cost-shared, \$2 billion, ten year program between government and industry to:
  - Demonstrate emerging technologies in coal-based power generation
  - Accelerate emerging technologies deployment to commercial use
- Provides early demonstration opportunities for core coal and power RD&D as precursor to Vision 21
- Ultimate Goals: high efficiency with carbon management
  - Move away from existing plant upgrades (mercury, NO<sub>X</sub>, particulates)
  - ♦ High efficiency, low CO<sub>2</sub>
  - Sequestration ready



## Gasification-based Systems

- Converts solid and liquid feedstocks to synthetic gas that can be easily cleaned of pollutants
- Converts potential pollutants to salable by-products such as sulfur, construction materials, and abrasives
- Enables production of electricity, steam, clean transportation fuels, chemicals, hydrogen, and natural gas substitute
- ♦ Enables CO₂ separation and capture





## Demonstrated Success in Gasification-based Systems





### **Distributed Generation**

- Fuel cells are being developed for distributed generation (DG) applications
- The Solid State Energy
   Conversion Alliance
   (SECA) is working
   specifically toward mass
   customization of 3-10kW
   fuel cell module
- Integration of fuel cell and turbine into a hybrid system will lower system cost and improve overall system efficiency







### SECA Development: Progressive Applications





- Prototype testing
- ♦ \$800/kW
- Auxiliary power
- Residential



- ◆ 70-80% efficient plants
- ◆ \$50/kW propulsion

**2010** 

\$400/kW stationary units

Ultimate Application: Vision 21 systems using syngas or H<sub>2</sub>



### **Carbon Sequestration**

#### Capture and Storage



Unmineable Coal Seams

Depleted Oil /
Gas Wells,
Saline
Reservoirs



Deep Ocean Injection



Mineral Carbonation



Enhance Natural Processes

Forestation



Enhanced Photosynthesis



Iron or Nitrogen Fertilization of Ocean

Provide technology options that address CO<sub>2</sub> stabilization at a target cost of \$10/ton of carbon removed



### Carbon Sequestration (cont'd)

#### Near Term

◆ Focus on reducing cost and showing feasibility of capture and separation of CO₂ from power plants, with sequestration in geological structures (enhanced oil recovery, coal bed methane – reduce net cost from \$200/ton carbon to \$30-\$70 /ton carbon)

#### Long Term

 Greater emphasis on advanced reuse and conversion concepts with target costs of \$10/ton carbon (0.2 cent/kwh impact on electricity costs)

#### ◆ Longer Term

 Integrate with Vision 21 power facility designs for use with both gasification and combustion systems



## Sequestration: A Dynamic Program

- ◆ Diverse Research Portfolio: ~ 60 projects
- ♦ Strong Industry Support: ~ 40% cost share
- ◆ Example Accomplishments (FY 2002):
  - Complete an initial test to validate diagnostics and models for tracking injected CO<sub>2</sub> in a depleted oil reservoir (Sandia/Strata)
  - Begin full-scale project on sequestering CO<sub>2</sub> in unmineable coal seams (Consol)
  - Partner with federal, state, and local agencies in Kentucky to demonstrate terrestrial sequestration in mined lands (University of Kentucky)
  - ◆ Initiate full-scale monitoring and verification project on CO₂ injection into a depleting oil reservoir (Dakota/Weyburn)
  - Complete initial database on CO<sub>2</sub> storage potential of US geologic formations in 5 State Region (MIDCARB, State Geologic Consortia)



### CO<sub>2</sub> Storage Capacities

#### Worldwide CO<sub>2</sub> Storage Potential

| Storage Option            | Capacity (billion tons) |   |         |
|---------------------------|-------------------------|---|---------|
| Deep Ocean                | 5,100                   | - | 100,000 |
| Deep Aquifers             | 320                     | _ | 10,000  |
| Depleted Oil Reservoirs   | 500                     | _ | 1,000   |
| Depleted Gas Reservoirs   | 150                     | - | 700     |
| Coal Seams                | 150                     | _ | ???     |
| Forests                   | 4.4 per year            |   |         |
| Carbonate Storage on Land | Infinite                |   |         |

Sources: IEA Greenhouse Gas R&D Programme; Advanced Resources International estimates for coal seams

Potential greatly exceeds current global emissions of 21 billion tons per year CO<sub>2</sub>



### Vision 21



- Virtually pollution free
  - Sulfur/nitrogen pollutants converted to chemicals, fertilizers, etc.
- ◆ Double power efficiencies
  - 60%+ (compared to 33% today), reduces CO₂ emissions by 40%
- Multiple products
  - Combined heat and power, plus liquid fuels/chemicals boosts overall efficiencies to 80%+

Today 2005 2010 2015

Adv. Pulverized & Fluidized Combustors

**Gasification Combined Cycle** 

**Gas Turbines** 

**Emission Controls** 

**Fuel Preparation** 

**Liquid Synthesis** 

**Ultra-Super Critical Steam Systems** 

High Performance Heat Exchangers

Membrane/Other Gas Separation

Fuel Flexible Gasifiers and Gas Turbine/Fuel Cells

Carbon Sequestration R&D

Hybrid Gasifier/Combustor, Fuel Cell/Turbine Systems

**Advanced Emission Controls** 

Liquids/Heat Coproduction

CO<sub>2</sub> Capture

**Carbon Sequestration** 



## Vision 21 Cost Reduction Goals

|                                 | Present                         | 2015 Goal                                 |
|---------------------------------|---------------------------------|-------------------------------------------|
| IGCC Capital Cost               | \$1200 / kW                     | \$900 / kW*                               |
| Fuel Cell Capital Cost          | \$ 1500/kW**                    | \$400 / kW                                |
| Hydrogen Production (from coal) | \$6.83/mmBtu                    | \$4.00/mmBtu                              |
| Oxygen Production               | Cryogenic-air<br>separation     | Reduce capital<br>cost 35%<br>(membranes) |
| Liquid Fuels Production         | \$28/bbl-crude<br>equivalent    | \$20/bbl-crude<br>equivalent              |
| Carbon Sequestration            | \$140 – \$200 per ton<br>carbon | \$10 per ton<br>carbon                    |
| Cost of Electricity             | Fuel cost dependent             | 10% less for equivalent fuel cost         |

<sup>\*</sup> Based on cost reductions in flexible turbines, gas separation and conditioning, and fuel cells)

<sup>\*\*</sup> Market entry target cost



### Vision 21 Technology Targets

**CCT Program** 

**R&D Program** 

**Foundation** 

**Stepping Stones to Vision 21** 

|                              | 2000                           | 2005      | 2010      | 2015-Vision 21                             |  |  |
|------------------------------|--------------------------------|-----------|-----------|--------------------------------------------|--|--|
| Efficiency                   | 42%                            | 47%       | 60%       | >60%                                       |  |  |
| Emissions                    | 1/6 NSPS                       | 1/10 NSPS | 1/10 NSPS | Near-Zero                                  |  |  |
| CO <sub>2</sub><br>Reduction | 24%                            | 32%       | 47%       | No Net CO <sub>2</sub> w/<br>Sequestration |  |  |
| Cost of<br>Energy            | <b>←</b> 10-20% lower <b>→</b> |           |           |                                            |  |  |

Source: DOE Program Data



### Coal IGCC Cost and Performance





### Overview

- ◆ Background
- Emission Reduction
   Technologies for Existing Fleet
- Emission Reduction
   Technologies for New Fleet
- ◆ Conclusions



### Critical Path to Success for Emission Reductions

- ♦ Short Term: Affordable environmental technologies for existing coal-fired power plants (mercury control, NO<sub>X</sub>, SO<sub>2</sub> particulates)
- Mid Term: Much cleaner, more efficient options for new coal and gas plants, 2005 – 2015 (IGCC, advanced combustion technologies)
- Long-Term: Near-zero emission, high efficiency coal and gas power plants – with low-cost carbon sequestration – by 2015 (Vision 21 systems, fuel cells)



### **Strategy**

- Foster complementary, integrated programs.
  - ◆ R&D, demonstrations, deployment incentives
  - Build from a foundation of successes
- Leverage funds and accelerate technology transfer via government / industry partnerships
  - Focus on technology needs not met by private sector, and providing a substantial public good
- Continually re-assess market situation, external technology drivers, technology progress – and adjust RD&D program
  - Work with regulatory agencies to ensure regulations are science-based and exploit emerging technologies